The dark side of AQUACULTURE
AUTHORS
Frédéric Le Manach (BLOOM), Megan Bailey (Dalhousie University), Tim Cashion (Sea Around Us, University of British Columbia), and Claire Nouvian (BLOOM)

ABOUT BLOOM
BLOOM is a non-profit organization founded in 2005 that works to preserve the ocean and a socio-economic balance in the fishing sector. We run advocacy, education and awareness campaigns and conduct scientific research. BLOOM’s actions are meant for the general public as well as policy-makers and economic stakeholders.
SUMMARY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>p. 4</td>
</tr>
<tr>
<td>Key findings</td>
<td>p. 5</td>
</tr>
<tr>
<td>Key recommendations</td>
<td>p. 6</td>
</tr>
<tr>
<td>Overview of global reduction fisheries</td>
<td>p. 7</td>
</tr>
<tr>
<td>- The new era of aquaculture</td>
<td>p. 7</td>
</tr>
<tr>
<td>- What is a reduction fishery?</td>
<td>p. 8</td>
</tr>
<tr>
<td>- A slightly declining trend</td>
<td>p. 10</td>
</tr>
<tr>
<td>- The fishmeal and fish oil market</td>
<td>p. 10</td>
</tr>
<tr>
<td>- European reduction fisheries</td>
<td>p. 12</td>
</tr>
<tr>
<td>- Fishing down European fish (stocks)</td>
<td>p. 13</td>
</tr>
<tr>
<td>- Fishing down</td>
<td>p. 13</td>
</tr>
<tr>
<td>- Fishing further (into other waters)</td>
<td>p. 13</td>
</tr>
<tr>
<td>- Health check of European ‘forage fish’</td>
<td>p. 14</td>
</tr>
<tr>
<td>Why are reduction fisheries a problem?</td>
<td>p. 15</td>
</tr>
<tr>
<td>- Ecosystem effects</td>
<td>p. 15</td>
</tr>
<tr>
<td>- Food security and human health</td>
<td>p. 17</td>
</tr>
<tr>
<td>- What is the future of reduction fisheries?</td>
<td>p. 18</td>
</tr>
<tr>
<td>- The future of aquaculture may come from the past!</td>
<td>p. 19</td>
</tr>
<tr>
<td>Conclusion</td>
<td>p. 20</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>p. 21</td>
</tr>
<tr>
<td>References</td>
<td>p. 21</td>
</tr>
<tr>
<td>Annex</td>
<td>p. 29</td>
</tr>
</tbody>
</table>
ABSTRACT

This report dives into the world of ‘reduction fisheries’, i.e. the transformation of wild fish into fishmeal and fish oil to supply the aquaculture sector, as well as pig and poultry farming.

Despite high impacts on marine ecosystems and coastal communities, this topic is vastly overlooked by researchers, civil society and public authorities. Overall, little independent information is available, and the reduction fishing industry remains opaque and adverse to cooperation. This sector of activity and its consequences on the sustainability of farming require closer observation and more independent scientific investigations.

The overall pattern of reduction fisheries is questionable when considering the global process of ‘fishing down marine food webs’, the expansion of fleets into the waters of developing countries, and the final use of the product (fishmeal), which feeds a mostly unsustainable aquaculture scheme of predatory fish and forms an unnecessary input into the diet of non-piscivorous species such as pigs, poultry or mink (farmed for fur).

In this report, we show that reduction fisheries were developed as a result of our inability to sustainably manage abundant traditional fish stocks. We demonstrate that the ‘fishing down’ process from species high in the food chain to species lower in the food chain also occurs within reduction fisheries themselves, which are shifting from typical pelagic species such as anchovy, sandeel and herring to new, hitherto ‘undesirable’ species such as boarfish and lanternfish (Myctophids).

We highlight two urgent issues with dire social and environmental consequences that need to be addressed:

- Overall, 90% of the fish reduced into fishmeal and fish oil are perfectly fit for human consumption. Instead of contributing to food security, especially in developing countries where pelagic species are often captured, these fish are used to farm salmon for developed countries (as a result of the massive overfishing and eventual collapse of wild salmon populations);

- The fastest growing type of aquaculture, which produces predatory species that match the taste and demand of consumers in developed countries, is the most problematic one with the highest impact on the ocean, ecosystems and humans. The growth of this sector simply corresponds to business opportunities supported by strongly questionable labelling schemes such as the Marine Stewardship Council (MSC) and the Aquaculture Stewardship Council (ASC), although solutions that should be encouraged do exist to minimize the impact of reduction fisheries and fish farming on humans and the environment.

Here we argue that only integrated multi-trophic aquaculture (IMTA) should be sought for by entrepreneurs and supported by public authorities, while direct consumption of wild fish should be a top priority of the global agenda.
Aquaculture supplied 9.8 kg of fish per year and per inhabitant in 2012, i.e. close to 50% of all fish consumed by humans around the world;

China is by far the most prominent country engaged in aquaculture, with around 50% of the global production;

Carnivorous species, such as Atlantic salmon, Atlantic cod, Atlantic bluefin tuna and tropical shrimp are either produced in or exported to developed countries, and rely heavily on ‘reduction fisheries’, i.e. fisheries whose catches of fish and krill are turned into fishmeal and fish oil;

Fishmeal and fish oil are also increasingly used to boost the growth of herbivorous species;

Between 1950 and 2013, 25% of the world’s catch of wild fish was reduced into fishmeal and fish oil;

Three families of fish (i.e. Engraulids, Clupeids and Canyonids) accounted for 78% of all reduction fisheries;

90% of the reduced catch consist of food-grade fish. The role of small pelagic fish in human food systems has recently shifted from direct to indirect consumption;

Almost half of all biomass removals from reduction fisheries are destined for non-aquaculture use and enter the diet of animals that do not naturally eat fish such as pigs and poultry. A small proportion of fishmeal is even used in pet foods and as food for mink to produce fur.

Industrial reduction fisheries in the EU have only accounted for 12% of the total catch since 1950. Denmark (including the Faroe Islands) leads this sector, with 71% of total EU reduction fisheries. However, aquaculture is rapidly developing in the EU so these figures might change substantially in the near future;

A rise in reduction fisheries occurred when fleets started turning their attention from collapsing wild fish stocks captured for human consumption to species that could be reduced to fishmeal and fish oil in order to farm the species that were overfished in the wild;

Even ‘traditional’ forage fish species such as anchovy and sandeel are now being fished down to the extent that fleets need to develop target fisheries for new, hitherto unwanted species such as boarfish, lanternfish and krill;

Over a third of the total catch destined to be reduced comes from poorly managed fisheries;

Forage species play a crucial role in the food web, converting energy from phytoplankton and zooplankton into a usable form for predatory fish, such as marlin, tuna, cod etc., as well as seabirds and marine mammals;

Pelagic fish are an essential component of the developing world’s diet but the demand for these fish by the fishmeal sector directly threatens the food security of local populations;

Bioconversion initiatives set forth a possible sustainable future for aquaculture: a fully beneficial cradle-to-cradle recycling scheme which allows feeding farmed animals with virtually no negative impacts on the environment and possibly even solutions for ecological problems such as waste management. For example, blood collected from slaughterhouses or organic waste are used to feed insect larvae, which are then turned into feeds;

Certifying as ‘sustainable’ fisheries that reduce fish to produce fish and pose stark food security problems is in total contradiction with the FAO Code of conduct for responsible fisheries and elementary ethics. It simply serves as a stamp of ‘sustainability’ approval to controversial yet certified aquaculture schemes.
KEY RECOMMENDATIONS

Instead of rolling over by default a pattern of serial depletion (over-fishing one stock and moving on to the next), it is imperative to take a step back and reflect on how to make current fisheries sustainable instead of blindly encouraging the development of unsustainable aquaculture schemes.

We suggest six key recommendations to achieve this:

1. Consumer’s demand for carnivorous fish species, pigs and poultry should decrease;
2. Food-grade fish species (such as herring) should be solely used for direct consumption and not for reduction;
3. The EU should be a role model by refusing to reduce fish to produce fish. Legislation prohibiting the use of fishmeal in animal feed should be enacted;
4. Reduction fisheries should not be eligible for “sustainable” certification;
5. The EU can decide to reverse the current trend of unsustainable aquaculture by setting ambitious standards of practice;
6. Cradle-to-cradle solutions such as insect farming, resulting in waste problem management and protein production, must be developed.
OVERVIEW OF GLOBAL REDUCTION FISHERIES

THE NEW ERA OF AQUACULTURE

Aquaculture has been promoted as one way to alleviate pressure on wild populations and improve food security.\[^{[4-5]}\] In Europe in particular, it is presented as a way to fill the gap between a rising seafood demand and declining catches of wild fish.\[^{[6-7]}\] However, this report will demonstrate that this is clearly not the case.

Large-scale aquaculture and intensive farming in marine environments are relatively recent phenomena, with 106 marine species being domesticated between 1987 and 1997.\[^{[8]}\] In 2013, 575 taxa of plants (mostly seaweed) and animals (mostly fish, crustaceans and mollusks) were farmed, according to the Food and Agriculture Organization of the United Nations (FAO).\[^{[9]}\] China is a historical player in aquaculture\[^{[10]}\] and by far the most prominent country engaged in fish farming, with around 50% of the global production (Figure 1).

The large-scale industrial aquaculture being developed nowadays is hardly reminiscent of the earliest aquaculture,\[^{[11]}\] believed to have begun in Asia, between 2,000 and 1,000 B.C. with the small-scale farming of freshwater common carp (Cyprinus carpio).\[^{[12]}\] Once used to provide food for small villages, aquaculture now supplies close to 50% of all fish directly consumed by humans around the world.\[^{[13]}\] In terms of global per capita fish consumption, capture fisheries (including fisheries targeting freshwater species inland) provided 9.8 kg per year in 2012, whereas 9.4 kg per year was sourced from both inland and marine aquaculture.\[^{[14]}\]
In developed countries, most farmed species are carnivorous, such as Atlantic salmon (*Salmo salar*), Atlantic cod (*Gadus morhua*), and Atlantic bluefin tuna (*Thunnus thynnus*). Other species such as tropical shrimp species (e.g. giant tiger prawn, *Penaeus monodon*, farmed in Thailand) are also exported to developed countries. These species rely heavily on feed that is produced with wild-caught marine species (‘reduction fisheries’).

On the contrary to the farming of carnivorous species, growing herbivorous species has the potential to promote economic and food security in developing countries. The growing industrialization of the aquaculture sector, including herbivorous fish farming, is nonetheless a cause of concern due to various detrimental effects, such as the important use of antibiotics, the overfertilization of surrounding waters etc. Many Asian countries (including Vietnam and China) and increasingly African countries rely on herbivorous farmed fish, which are not fed with wild-caught fish (‘reduction fisheries’), although this is less and less true.

WHAT IS A REDUCTION FISHERY?

The term ‘reduction fisheries’ designates fisheries whose catches of fish and crustaceans (essentially krill) are turned into fishmeal and fish oil. These species of fish are sometimes referred to as ‘forage fish’ and are almost exclusively small pelagic species, such as anchovies, herring, sprat, and sardines. Small pelagic fish are capable of rapid reproduction and growth, and therefore are generally considered resilient to massive removals by fisheries. However, they are also highly sensitive to environmental factors such as El Niño and La Niña.

Krill and forage fish are found all over the world’s oceans, with the major regions supporting reduction fisheries located off the West Coast of South America, the United States (East Coast and Alaska), around northern Europe, West Africa, and Antarctica (for krill).

FORAGE FISH are bait fish preyed on by larger predators such as carnivorous fish (tuna, cod), seabirds and marine mammals. They are close to the bottom of the oceanic food web, and include species such as herring, sardine, anchovy and sprat.

The role of small pelagic fish in human food systems has shifted over time from direct to indirect consumption. Historically, small-scale artisanal fishers have targeted stocks of small pelagic fish, in part because it can be less costly to fish schooling species that aggregate in large groups. It was not until the 1950s that industrialization of these fisheries occurred. Today, almost 70% of landed forage fish are not directly consumed, but rather processed into fishmeal and fish oil.

Overall, biomass removals from reduction fisheries are considerable: between 1950 and 2013, 25% of the world’s catch of wild fish (excluding discarded catch, subsistence and recreational fisheries) was reduced into fishmeal and fish oil (**Figure 3**). Three families (i.e. Engraulid, Clupeid and Carangid) accounted for 78% of all reduction fisheries, with 41%, 25%, and 8% respectively (**Figure 4**). Overall, Peruvian anchoveta (*Engraulis ringens*, an Engraulid) made up 35% of the reduction fisheries catch.

1 Pelagic fish are those found in the mid to upper levels of the ocean. Small demersal species such as blue whaling and sandeels are also targeted.

2 This figure is based on the data underlying Cashion et al. (2017)’s paper. For this estimate, we extracted the list of species that accounted for 90% of the reduction fisheries (excluding ‘Marine fish nei’ and ‘Carangid’ groups, which were too broad to be meaningful) since 1950. For this list of species, we then calculated the percentage of the catch destined for reduction, compared to the catch destined for direct human consumption. This list included the following taxa: Ammodytes sp. *Brevoortia patronus*, *Clupea bentincki*, *C. harengus*, *C. pallasii pallasi*, *Doradus gigas*, *Engraulis capensis*, *E. encrasicolus*, *E. japonicus*, *E. ringens*, *Leiognathus*, *Mallotus villosus*, *Micromesistius poutassou*, *Nemipterids*, *Sardinia pilchardus*, *Sardinella longiceps*, *Sardinops sagax*, *Scomber japonicus*, *S. scombrus*, *Sprattus sprattus*, *Trachurus murphyi*, *Trichurus lepturus*, and *Trisopterus esmarkii*.

Figure 3 Herring (*Clupea harengus*) and sprat (*Sprattus sprattus*). © A. Fraikin

Figure 4 Overall, Peruvian anchoveta (*Engraulis ringens*) made up 35% of the reduction fisheries catch.
The Dark Side of Aquaculture

Troubling fact: 90% of the reduced catch consist of food-grade fish, which is perfectly fit for direct human consumption.

Reduce That Fish!

Fishmeal is a brown flour-like powder that is produced by cooking, pressing, drying and grinding whole fish and fish trimmings, i.e. leftover scraps of fish from processing plants. Fish oil is extracted during the cooking and pressing process. In the early 2000s, 6.2 million tonnes of fishmeal and about 1.3 million tonnes of fish oil were produced at about 400 reduction plants worldwide, out of about 30 million tonnes of wild capture reduction fisheries catch. This corresponds to a conversion factor of 25%.

Why Give Fish to Pigs and Chickens?

Fishmeal and fish oil are highly desired feeds for the fish and livestock production industry because they have reported immunity and health benefits, are easily digestible, and may increase ‘feed appeal’ through improved palatability. However, it has also been pointed out that fishmeal and fish oil do not contain any unique nutrient (i.e., they are replaceable) but are just convenient delivery packages for the nutrients required for animal production.

Figure 3: End use of global industrial and artisanal marine landings (i.e. excluding discarded catch and recreational fisheries), 1950-2013.

Figure 4: Global catches of forage species by family, 1950 to 2013. The large drop in catches of Engraulidae in the late 1990s is due to a strong El Niño event.
TOUCHING THE BOTTOM: KRILL FISHERIES
Kril (almost exclusively Antarctic kril Euphausia superba) are targeted by reduction fisheries in order to produce fish oil used for aquaculture and agriculture purposes, but also health supplements for human consumption. The vast majority (89.2%) of the krill catch comes from the Antarctic part of the Atlantic Ocean, and Eurasian countries account for almost all of it. Norway is currently the main actor, with 70.3% of the global catch since 2000.[5] These fisheries could have tremendous implications on the functioning of ecosystems, as kril forms the very first component close to the bottom of the oceanic food chain.[5-20]

SALMON FARMING: A POSTER-CHILD OF AQUACULTURE UNSUSTAINABILITY
Since the 1970s, catches of North Atlantic salmon have dramatically decreased from almost 13 000t in the early 1970s to 1 100t in 2014.[3] There was virtually no farming then but today, the vast majority (already close to 95% in the late 1990s) of salmon available on markets comes from aquaculture.[3] Instead of rebuilding collapsed wild populations that have been fished almost to extinction, extensive salmon farming started, using fishmeal made of wild species lower on the food chain.

On top of its heavy use of fishmeal and fish oil, salmon farming is widely criticized for a range of problems including the use of antibiotics,[35-36] parasitism of wild populations by sea lice,[35-36] farmed fish escaping from pens and interfering with wild individuals,[37-39] and organic matter pollution from the farms.[40]

A SLIGHTLY DECLINING TEND
Since 2004, the proportion of fish reduced into fishmeal and fish oil has reduced from 28% to 19%, because:

- An increasing proportion of fishmeal and fish oil is based on by-products and waste from processing (around 25-35%),[35] rather than on whole wild-caught fish.[44-47] However, products derived from these ‘trimmings’ are of a lesser and more variable quality, so it is likely that trimmings will never entirely replace whole fish in the feeding scheme.
- Some species have also been increasingly consumed directly, such as herring and blue whiting in Europe. Other species such as mackerel are also sometimes exported to Africa for direct consumption, where they form an extremely valuable source of protein.[16, 48]

However, this encouraging trend is expected to reverse in the future due to the increasing use of fishmeal and fish oil to boost the growth of herbivorous species.[23]

THE FISHMEAL AND FISH OIL MARKET
The two biggest fishmeal producing countries are Peru and Chile.[21] Their production, along with that of Panama and Argentina, makes South America the leader of the global fishmeal market with around 50% of the production (Figure 5). Continental Europe (including Russia, Norway, and Iceland) is the world’s third largest producer, generating about 16% of the global fishmeal and fish oil supply, which represents around 500,000 tonnes per year.

In the European Union, only Denmark is a significant actor, with 5% of global fishmeal production. Trimmings are thought to make up around a third of Europe’s fishmeal production.[21, 45]

Fish reduced to fishmeal and fish oil are used as feed for three main animal production sectors: pig, poultry and fish farming. In 2008, it was estimated that about 57% (and increasing) of the global production of fishmeal supplied the aquaculture sector, 22% supplied the pig farming sector, and 14% the poultry-farming sector (Figure 6).[19] In other words, almost half of all biomass removals from reduction fisheries are still destined for non-aquaculture use and enter the diet of animals that had never been fed fish before. A small portion (but increasing quantities) of fishmeal produced
is also used in pet foods and as food for farmed mink to produce fur.\[^{[15; 20; 22; 49]}\]

These proportions represent a dramatic shift in sector demand from only a decade ago, where only 17% of all fishmeal produced went to aquaculture feeds (Figure 6).\[^{[50]}\]

Fish oil (including that produced with krill) used to be principally used for direct consumption by humans,\[^{[18]}\] but the overwhelming majority of global production now goes to supplying the aquaculture market, with only about 13% supplying ‘other’ markets.\[^{[22; 19]}\] Increasingly, though, fish oil is coming back into the ‘neutraceutical’ market for human consumption as omega-3-rich dietary supplements.\[^{[141; 13-14]}\] Other markets include land animal feeds and industrial purposes such as engine oils and fertilizers.\[^{[31; 55]}\] Overall, about 40% of the world’s fish oil supply goes to feeding farmed Salmonids (i.e. salmon and trout species).\[^{[56]}\]

The EU is a net importer of fishmeal and fish oil, with respectively 442,000 tonnes and 63,000 tonnes imported annually in the mid-2000s.\[^{[57]}\] In 2004, the EU utilized 18% of the global fishmeal supply and 19% of the global fish oil supply.\[^{[53]}\]

Figure 5: Fishmeal production by continent (compiled from Seafish).\[^{[58]}\]

Figure 6: Proportion of global fishmeal supply used by different sectors.\[^{[23; 50; 59]}\] A more complete and recent time-series was requested to the International Fishmeal and Fish Oil Organisation (IFFO) but not obtained.

\[^{3}\] Before reduction fisheries expanded and reached the scale we know today the use of fishmeal as fertilizer was common.

\[^{11}\] See e.g. Olivari (1933) Recherches techniques – La farine de poisson. Revue des travaux de l’Office des pêches maritimes 24, tome VI (fasc. 4), Office scientifique et technique des pêches maritimes (OSTIPM), Paris (France). pp. 328-500.
EUROPEAN REDUCTION FISHERIES

Both seines and trawls are used to target and catch fish species destined for reduction. Purse seine nets can be larger than 600 meters in length. Fishing vessels are fitted with hydro-acoustic sounders capable of estimating biomass and species composition of fish schools under the boat. Some European reduction fishery vessels have on-board reduction capabilities — where processing is done at sea — and others land the fish at processing plants on shore. Trawlers can be more than 100m in length, with 100m-wide and 60m-high trawls.

Industrial reduction fisheries in the EU have only accounted for 12% of the total catch since 1950 (Figure 7). Denmark (including Faroe Islands) leads this sector, with 71% of total EU reduction fisheries. It has been asserted that 41% of all fishers in Denmark rely in some way or another on reduction fisheries. For this country alone, there were over 10,000 mid-water trawl trips made in 1999 for reduction species.

Ammodytids (sandeels), Clupeids (herrings and sprat) and Gadids (Norway pouts, blue whiting) account for 97% of the catch (Figure 8). Overall, the reduction fisheries catch has decreased since 1995 when it peaked slightly below 2 million tonnes per year.

Non-EU countries such as Norway, Iceland and Russia are very important reduction fisheries nations, with a catch since 1950 reaching almost twice that of EU countries.
FISHING DOWN EUROPEAN FISH (STOCKS)

FISHING DOWN
Historically, the most productive fishing area in Europe has been the North Sea. However, both the North Sea and the Barents Sea have experienced major declines in landings in the past half-century, and a rise in reduction fisheries occurred when fleets started turning their attention from collapsing stocks fished for human consumption to species that could be reduced to fishmeal and fish oil.

New fisheries targeting species such as boarfish and capelin have also been developing as historical fisheries have declined. Yet again, we see the pattern of exploiting least desirable species lower on the food chain as a result of a complete failure to manage fisheries of other stocks sustainably (see Annex and sidebox ‘Sequential exploitation and depletion of the ocean’).

FISHING FURTHER (INTO OTHER WATERS)
European vessels also target species for reduction outside the Northeast Atlantic, essentially in the Eastern Central Atlantic and in the Northwest Pacific. The case of European reduction fisheries in the Eastern Central Atlantic is particularly interesting and worrisome, since they occur in the western part of Africa, i.e., an area where coastal populations strongly depend on fish, including a few species of forage fish, for their daily protein needs.

In order to target various species such as jack and horse mackerels, European pilchard, and sardinelas, the European Union has secured two fishing access agreements with Morocco and Mauritania since 1988. Since 2000, the EU countries that took most of the licenses attributed via these publicly-funded agreements are the Netherlands (30.5%), Ireland (26.6%), Lithuania (17.8%) and Latvia (10.2%).

In Mauritania, quotas have fluctuated between 250,000 and 450,000 tonnes per year (for 15-25 vessels), whereas they were of 60-80,000 tonnes per year in Morocco (for 18 vessels).

SEQUENTIAL EXPLOITATION AND DEPLETION OF THE OCEAN
Historically when one species or stock of fish is fully exploited, fleets just start fishing new species altogether. There is evidence that a new reduction fishery targeting boarfish (*Capros aper*) has recently begun in Europe, and industry representatives even declared it one of the main target species (www.eufishmeal.org/resources). Although boarfish used to be considered a ‘nuisance’ bycatch species in mackerel, horse mackerel and crustacean trawl fisheries, large spawning aggregations of this small mesopelagic fish are now being targeted by Irish and Danish fleets. Catches of boarfish now replace scarcer sandeels in Danish fishmeal plants.

FISHING DOWN, AND DOWN, AND DOWN...
Recently, it has been suggested that targeting deeper-dwelling mesopelagic species (those living at depths of about 200-1,000 m) may be a possible future direction for reduction fisheries. Mesopelagic fishes may be — by far — the most abundant in the ocean. One such group of species, the lantern fishes (family Myctophids) is the most abundant mesopelagic fish group, spending the day at about 400-1,000 m depth, and migrating closer to the surface at night to feed on plankton. Lantern fishes were tested as a possible fishmeal and fish oil input as early as the 1980s. South Africa is already using lantern fish (*Lampanyctodes hectoris*) in their production of fishmeal and fish oil.
HEALTH CHECK OF EUROPEAN ‘FORAGE FISH’

Regarding the overall situation in the world, an early initiative by the NGO ‘Sustainable Fisheries Partnership’ was undertaken to assess the sustainability of the fisheries used for reduction into fishmeal and fish oil. Their first findings were less than encouraging: none of the principal reduction fisheries in the world used ecosystem-based management approaches and only 14% of the fish stocks used for reduction had biomass levels larger than sustainable target levels estimated by biologists. Their most recent report is still alarming: over a third of the total catch destined to be reduced comes from poorly managed fisheries.

In Europe, five species account for over 90% of the catch reduced into fishmeal and fish oil: sandeels (Ammodytes sp.), herring (Clupea harengus), Norway pout (Trisopterus esmarkii), blue whiting (Micromesistius poutassou), and sprat (Sprattus sprattus). The EU sets quotas for all these species (see Annex), and in 2016, the International Council for the Exploration of the Sea (ICES) published an exploitation status for 27 of their stocks (see Table).

![Norway pout (Trisopterus esmarkii)](image)

STATUS OF THE MAIN EUROPEAN FORAGE FISH STOCKS

<table>
<thead>
<tr>
<th>Species</th>
<th>Area</th>
<th>Indicator</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway pout</td>
<td>North Sea, Skagerrak, and Kattegat</td>
<td>No status</td>
<td>[101]</td>
</tr>
<tr>
<td>Blue whiting</td>
<td>-</td>
<td>Overfished</td>
<td>[102]</td>
</tr>
<tr>
<td>Sprat</td>
<td>North Sea</td>
<td>Overfished</td>
<td>[103]</td>
</tr>
<tr>
<td></td>
<td>Baltic Sea</td>
<td>Overfished</td>
<td>[104]</td>
</tr>
<tr>
<td>Sandeel</td>
<td>North Sea, Skagerrak and Kattegat</td>
<td>No status</td>
<td>[105]</td>
</tr>
<tr>
<td></td>
<td>Central and South North Sea, Dogger Bank</td>
<td>No status</td>
<td>[106]</td>
</tr>
<tr>
<td></td>
<td>Central and South North Sea</td>
<td>No status</td>
<td>[107]</td>
</tr>
<tr>
<td>Herring</td>
<td>Eight different stocks</td>
<td>Appropriate</td>
<td>[108-115]</td>
</tr>
<tr>
<td></td>
<td>Gulf of Riga</td>
<td>Overfished</td>
<td>[116]</td>
</tr>
<tr>
<td></td>
<td>West of Scotland and Ireland</td>
<td>Appropriate</td>
<td>[117]</td>
</tr>
<tr>
<td>Other stocks</td>
<td>No status</td>
<td>No status</td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ‘Not in good shape’ means that the biomass is above the limit reference point, but below the threshold that triggers a specific management action.
** ‘In correct shape’ here means that the biomass is above the threshold that triggers a specific management action. It does not mean that the biomass is at its optimum (B_{MSY}).
*** ‘In bad shape’ means that the biomass is below the threshold that triggers a specific management action.
WHY ARE REDUCTION FISHERIES A PROBLEM?

As demand for animal protein grows around the world (in response to countries moving from the ‘least developed’ to ‘developing’ or ‘developed’ category), the use of reduction fisheries for fish/pork/chicken feeds is, in reality, **not alleviating pressure on wild fish stocks and marine habitats**, but in fact, **it is worsening the situation**. The removals of marine biomass associated with reduction fisheries lead to three main issues, namely i) ecosystem effects, ii) food security, and iii) energy efficiency. As the demand for fishmeal and fish oil is global, so are these problems.

ECOSYSTEM EFFECTS

Because the species targeted for reduction are generally short-lived, fast-growing fish, it is often suggested that they are capable of high catch rates. However, as for all fisheries but especially true of those targeting forage species, an ecosystem approach needs to be implemented because forage fish and krill form an essential component of the trophic chain.

Krill, for example, which mainly feeds on phytoplankton, is considered a core second link in the food chain. Forage fish species generally represent the third link in the food chain. Altogether, these forage species play a crucial role in the food web, converting energy from phytoplankton and zooplankton into a usable form for predatory fish, such as marlin, tuna, cod etc., as well as seabirds and marine mammals.

Despite the importance of forage fish for the integrity of the ecosystem, studies on the lateral effects of large removals of small pelagic species are not abundant. Given their high natural variability of biomass (due to phenomena such as El Niño and La Niña), large removals of forage fish stocks may have catastrophic ecological consequences for other species (some commercially exploited) at times of low abundance. Anecdotal events have been described, such as the fact that large numbers of seabirds starved to death in the Barents Sea when capelin stocks declined in the 1980s, and similarly, a sharp decrease in numbers of puffins coincided with the collapse of the Atlantic herring stocks in the North Sea (see Annex).
More recently, it appeared that diminished forage fish populations resulted in thousands of sea lion pups starving to death.

One notable quantitative study concluded that, although consumption of small pelagic fishes by marine mammals and sea birds does not interfere with fisheries exploitation, the reverse is not always true. The authors found that reduced biomass of pelagic fishes can be a challenge for many marine mammal and seabird species when considering local or regional populations whose distributional ranges may be limited.

Furthermore, we have limited knowledge about how global changes in the future climate will affect forage fish stocks. More ecosystem studies on the interaction of reduction fisheries and ecological processes are needed to help quantify how and where such interactions may have negative consequences on other animal populations. Forecasting models to predict these changes have been developed in the past decade, several of which refer to fish and fisheries in the North Sea. Scientists agree that changes in the distributions of forage fish species will impact ecosystems and fisheries, although to what extent is not fully understood. It has been predicted that future climate change outcomes could result in regional species extinctions in the Mediterranean Sea, and an invasion of new species into the North Atlantic, north of 40°.

LEAVE A THIRD FOR THE BIRDS

In 2011, the first global analysis of the impact that removals of forage fish species can have on seabirds breeding success concluded that forage fish populations needed to be kept at a minimum of about a third of their historic maxima to promote the breeding success of seabirds.

Given the range of possible futures, it seems pertinent to be cautious in removing large amounts of biomass from the oceans, especially of species known to be particularly important in the diets of finfish, marine mammals and seabirds.

FOOD SECURITY AND HUMAN HEALTH

Given that most fish destined to be reduced into fishmeal and fish oil are fit for direct human consumption, many questions pertaining to the sustainability of this inefficient and unethical process have been raised.

Many forage fish species, due to their low harvesting costs and lower market prices, often form the only viable economic option for fish consumption by low-income groups. At the same time, they are highly valuable as export to fishmeal-producing countries. The major issue with this is that it is precisely the exporting populations that are most dependent on forage fish. Fish consumption currently contributes about 21% and 18% of the total animal protein supply for Asian and African countries, respectively, compared to contributing only about 12% to the protein supply of developed countries.

While reduction species are not appreciated by the European palate, African countries imported about 1 million tonnes of processed pelagic fish products (mostly frozen) in 2006 for human consumption. In Indonesia, the Philippines, and other Southeast Asian countries, there is also consumer demand for small pelagic fish such as anchovy that are brine-salted or dried.

In Peru, the anchoveta was traditionally considered a ‘poor man’s food’, and thus demand for it was low in more affluent communities. With the advent of reduction fisheries and aquaculture, most anchoveta became reduced and exported to farms in other countries. Recently, however, an anchoveta revolution has occurred thanks to the determination of Patricia Majluf, with local chefs in leading restaurants serving anchoveta dishes for sophisticated palates. The goal: if local demand for anchoveta could be increased, perhaps less would
be reduced to fishmeal. Instead of satiating the appetites of consumers in the developed world through farmed fish, pigs and poultry, local consumption of anchoveta could contribute to food security in Peru. It has even been estimated that the possible economic returns from the landed fish could be increased ten times if more of the anchoveta catch were destined for direct consumption.

The problem is the same in East Africa, and coastal populations who once relied on their small pelagics now see them exported as fishmeal to and for China or developed countries to farm salmon, pig and poultry.

Pelagic fish are an essential component of the developing world’s diet but the demand for these fish by the fishmeal sector directly threatens the food security of local populations. Market economics dictates that the supply of small pelagic fish will be destined for whoever is demanding it, and currently, it is the aquaculture sector that is willing to pay the highest prices.

The entire cycle of reduction, fisheries from initial targeting of food-grade fish to the end use of fishmeal in aquaculture, pig and poultry farming is contrary to the FAO Code of Conduct for Responsible Fisheries, which specifically states that fisheries should contribute to food security, and that the use of food-grade small pelagic fish for fishmeal and fish oil production should be limited where it can otherwise be consumed.

This begs the following question: is it ethical to remove fish from one place where they are necessary, to create less but more desired protein in a place that is already largely overfed?

WHAT IS THE FUTURE OF REDUCTION FISHERIES?

When we consider the end users of fishmeal and fish oil, it seems that the pig, poultry and pet sectors are the odd-men out. Pigs and poultry, in the wild and in captivity, have never eaten fish as a natural part of their diet. The use of fishmeal in their diets is therefore absolutely not essential, and certain-

COMPLICATED CONVERSION RATIOS

There has been much confusion in the literature over conversion ratios, i.e. the amount of farmed fish that is produced from a given amount of wild-caught fish. For example, if every tonne of a given species required 5 tonnes of wild fish reduced into fishmeal, then the ratio would be 5:1. By considering the production of all farmed marine species (including carnivorous, omnivorous and herbivorous species), the International Fishmeal and Fish Oil Organisation (IFFO) fallaciously reports a ratio of 0.7:1, i.e. for every tonne of wild fish, the aquaculture industry produces almost 1.5t of output. However, when single species conversion ratios are used, the conversion efficiency changes drastically and is clearly greater than 1:1. Overall, it was estimated in the late 2000s that almost five kilos of forage fish were needed to produce one kilo of carnivorous fish in the late 2000s, with ratios as high as 10:1 for salmon in Chile. Since then, however, this ratio has decreased thanks to improvements in feed’s composition and has even been inferior to one in a few cases.

Ly does not contribute to the sustainable use of fisheries resources. The agriculture industry can and should eliminate the use of fishmeal and fish oil. The EU has enacted a first step in banning the use of fishmeal in ruminant diets in 2001, with an exception made for young animals.

Regarding aquaculture, the issue is more complex. In order to become a viable fish and seafood producer in the future, the aquaculture sector must radically improve conversion ratios and seek alternative sources of essential protein.

The proportion of fishmeal used in salmon feeds has, in fact, already decreased substantially in the past 20 years, from about 60% in 1985 to 30% today, with some companies even reaching as low as 20%.
In the meantime, an obvious recommendation is that consumer’s demand for carnivorous fish species, pigs and poultry decreases (particularly in developed countries) so that pressure on wild fish stocks does not increase. However, the aquaculture industry must tackle questions surrounding the current increase in demand. To decrease its reliance on fishmeal without replacing it with other problematic sources (e.g. soybean), other alternatives must be widely encouraged and developed. These bioconversion initiatives set forth a fully beneficial cradle-to-cradle recycling scheme. For example, blood collected from slaughterhouses or organic waste are used to feed insect larvae, which are then turned into feeds. Such projects are multiplying and could well be the future of aquaculture.

THE FUTURE OF AQUACULTURE MAY COME FROM THE PAST!
The aquaculture that first developed in China thousands of years ago is what we today call ‘integrated multi-trophic aquaculture’, i.e., a farming scheme by which fish grow on waste in ponds or rice paddies, themselves fertilizing plants by releasing nutrients.

Certifying fisheries that, as seen in this report, reduce fish to produce fish and pose stark food security problems is in total contradiction with the FAO Code of conduct for responsible fisheries and elementary ethics.

Why would a seafood label that is already harshly criticized would expose itself by certifying such controversial fisheries? In order to give a stamp of ‘sustainability’ approval to controversial yet certified aquaculture schemes. Indeed, the MSC label was launched by the WWF in 1997 and the panda NGO also launched the Aquaculture Stewardship Council (ASC) in 2010. Because the fastest growing aquaculture is the one farming predatory fish and using large amounts of fishmeal, the WWF certified-aquaculture scheme, ASC, depends on the MSC to greenwash its certifications. As the director of aquaculture for the WWF’s sustainable food program explains: “By requiring reduction fisheries to be MSC certified, ASC can most effectively protect biodiversity in our oceans.”
CONCLUSION

The issues associated with aquaculture sustainability need to be tackled sooner rather than later. Instead of rolling over by default a pattern of serial depletion of fish stocks (i.e. overfishing one stock and moving on to the next), it is imperative to take a step back and reflect on how to make current fisheries sustainable instead of blindly encouraging the development of unsustainable aquaculture schemes. The recent boom of the aquaculture sector is the result of the sequential depletion of marine species, which were fished down from the top of the food chain until reaching the first links of food webs (excluding algae), i.e. forage fish and krill. Aquaculture that reduces small pelagic species to produce large predatory fish should be seen as the ultimate proof that managing fisheries sustainably has failed. This unsustainable pattern is ongoing: even forage fish species are now being fished down to the extent that fleets need to seek new possibilities. Fisheries for species that were disregarded until very recently, such as krill, boarfish and lantern fish (Myctophids) are now being developed. This is extremely worrisome, as we are mining the foundations of oceanic ecosystems. Fishing fleets and governments should steer clear from forage fisheries.

Issues surrounding food security and even ecosystem implications are often ignored, and in particular, the end use of a fishery is not a factor in determining sustainability. It seems fair to question whether the consumption side of the equation, that is the final consumers of a given fishery, contributes to an ethical and sustainable use of natural resources. Our concept of sustainability needs to be broadened to encompass food security considerations. Therefore, adoption of and adherence to the FAO Code of Conduct, which explicitly states that fish should be used for direct consumption (and not, for example, for reduction) when possible, should be one goal all nations strive for in their quest for sustainable fisheries. Because food security is stated as a global priority, legislation prohibiting the use of fishmeal in animal feed should be enacted. It has also been suggested that reduction fisheries should not be eligible for sustainable certification.

In Europe, scientists are calling for better management of fisheries in an effort to foster sector sustainability from ecological, economic and social perspectives. European countries, particularly Denmark, but also Sweden, the UK, and other countries, participate at all levels in the fishmeal and fish oil supply chain, from the fishing of forage fish species, and the production of fishmeal and fish oil to using them in aquaculture and agricultural industries. The EU committed to improve fisheries management, therefore, Europe should aim to be a leader in promoting sustainable global fisheries.

Unsustainable aquaculture and associated reduction fisheries are by no means a fatality. The EU can decide to reverse the current trend by setting high standards on industrial and fishing practices. It is not too late for Europe, which is just beginning to develop its own aquaculture sector, to pave the way towards a truly socially and environmentally sustainable fish farming. This would encompass setting ambitious standards by refusing to reduce fish to produce fish, and by adopting on the contrary cradle-to-cradle solutions such as insect farming, resulting in waste problem management and protein production. Europe could thus serve as a role model to show other nations such as Iceland, Norway and Russia, how governments can make choices today that will shape a sustainable future.
ACKNOWLEDGMENTS

This report was funded by the non-profit France-based BLOOM. It was drafted in 2011 and was completed in 2016 on the basis of the monumental fish catch reconstructions carried out by the Sea Around Us under Pr. Daniel Pauly’s supervision. We would like to thank Stéphan Beaucher, Brooke Campbell, Jennifer Jacquet, and Marc Métian for their suggestions on earlier drafts and for facilitating this study. We would also like to thank artist Alexis Fraikin for the fish illustrations presented in the report and its annex.

REFERENCES

THE DARK SIDE OF AQUACULTURE

[58] Seafish (2011) Fish meal and fish oil figures. 30 p.

out the fishing opportunities and financial contribution provided for in the Agreement between the European Community and the Islamic Republic of Mauritania on fishing off the coast of Mauritania for the period 1 August 1993 to 31 July 1996. Official Journal L 290: 20-31.

European Community (2011) Council Regulation (EU) No 779/2011 of 12 July 2011 concerning the allocation of the fishing opportunities under the Protocol between the European Union and the Kingdom of Morocco setting out the fishing opportunities and financial compensation provided for in the Fisheries Partnership Agreement...

ICES (2016) 5.3.32 — Herring (Clupea harengus) in divisions 7.a South of 52°30’ North, 7.g-h, and 7.i-k (Irish Sea, Celtic Sea, and southwest of Ireland). ICES Advice on fishing opportunities, catch, and effort — Celtic Seas Ecoregion. ICES Advice 2016, Book 6, International Council for the Exploration of the Sea (ICES), Copenhagen (Denmark). 8 p.

ICES (2016) 8.3.14 — Herring (Clupea harengus) in subdivisions 25–29 and 32 (central Baltic Sea, excluding Gulf of Riga). ICES Advice on fishing opportunities, catch,

ANNEX
SPECIES TARGETED BY EUROPEAN REDUCTION FISHERIES

SANDEELS (AMMODYTES SPP.)

- Found from Russia and Iceland south to Portugal, and the Baltic Sea
- Prey for cod, haddock and seabirds
- Targeted by trawlers
- Stock suffering from reduced reproductive capacity
- No market for direct human consumption

There are several species of sandeels found in the North-east Atlantic, but it is mostly the small sandeel (Ammodites tobianus) that is targeted by reduction fisheries. Small sandeels, a bottom-dwelling species, preferring sandy seabed and brackish water estuaries. They are primarily captured in the North Sea by trawlers. As stocks of Norway pout and European sprat declined in the 1970s, the sandeel fishery intensified. Annual catches of about a million tonnes were reported in the mid-nineties, but these catches have decreased since. Sandeel are usually harvested in the spring and summer.

Sandeels are high in lipid content, and have been identified as an important prey species for seabirds in the North Sea. Overlap between reduction fisheries in these areas and seabird distribution shows that fisheries may in fact contribute to decreased breeding success in some areas. Poor breeding success of kittiwakes has been observed in an area where a local sandeel fishery is present. The EU thus prohibited the fishing of sandeels in a 20,000 km² area in the North Sea between April and August, when kittiwakes, along with puffins and gannets, use sandeel as feed for their young. The sandeel fishery is also regulated with quotas, minimum mesh size, vessel registration and vessel satellite tracking. It is thought that the stock is suffering from reduced reproductive capacity, and the 2010, 2012 and 2014 EU quotas were placed at between 177,500 and 264,000 tonnes.

NORWAY POUT (TRISOPTERUS ESMARKII)

- Distributed from Iceland and Norway to the Barents Sea
- Targeted by bottom trawlers
- Bycatch of juvenile haddock and whiting, and of adult blue whiting is of concern
- Stock suffering from reduced reproductive capacity.
- No market for direct consumption

Norway pout are in the Gadidae family, which also includes cod and haddock. They are short-lived, maturing at about two years of age, and reaching a maximum age of five years (www.fishbase.org). Currently, Norway pout are not targeted for human consumption because of their small size, according to the International Council for the Exploration of the Sea. Norway pout are considered benthopelagic fish: dense schools can be found near the muddy bottom of the ocean, where they are targeted by small-mesh bottom trawls. Generally, they are found between 100 and 200 m in depth. All of the catch is destined to be reduced into fishmeal or fish oil. Record high catches of almost 880,000 tonnes of Norway pout were reported in 1974, but the annual harvest has steadily declined since then.
ICES reports that the stock has suffered from reduced reproductive capacity in recent years, with biomass reaching the lower limits of what is considered acceptable. In 2005 the fishery was closed for the year, however, catch limits (total allowable catches or TACs) have been set in subsequent years. Regulations have been initiated, including a minimum mesh size, and a closed area in the North Sea to limit bycatch of haddock and whiting. ICES explicitly recognizes that Norway pout is an important prey item for many predatory species in the ecosystem. Furthermore, scientists have also highlighted the role that Norway pout plays in regulating euphausiid and copepod dynamics in the North Sea. The EU quota for 2010 was recommended at 76,000 tonnes. In subsequent years, it fluctuated between zero and 167,500 tonnes.

BLUE WHITING (MICROMESISTIUS POUTASSOU)

- Found in Bering Sea, western parts of the Mediterranean Sea, and south to Africa
- Important component of diets of cod, haddock, monkfish, mackerel, pilot whales, common dolphin
- Targeted by mid-water trawls
- Small proportion of catch supplies sashimi market, majority for reduction and surimi

Also a member of the Gadidae family, blue whiting reaches sizes of about 50 cm. Most blue whiting catch is destined for fishmeal, but there are efforts to increase the amount contributing to the supply of fish for human consumption.

Little is known of the biology and ecology of blue whiting. The high volume catches common in this fishery are therefore a cause for concern. ICES reported that the 2003 exploitation rate of blue whiting was not ecologically sustainable and catches in subsequent years have decreased. A quota system is in place for the blue whiting fishery and steeply increased in recent years, from 11,000 tonnes in 2011 to over 218,000 tonnes in 2014.

Blue whiting is a component in the diets of several fish species, including cod, haddock and hake, and it is also an important prey item for marine mammals. The ecosystem effects of large biomass removals of this important prey species have not been studied.

EUROPEAN SPRAT (SPRATTUS SPRATTUS)

- Distributed from the North Sea to Morocco, and in the Mediterranean, Adriatic and Black Seas
- Majority of catch reduced to fishmeal and fish oil
- Market for canned sprat (sold as 'anchovy') also exists
- Highest catches during the 1970s
- Bycatch of herring is an issue

Sprat are Clupeidae (i.e., the same family as herring) and reach about 16 cm in length. As much as 20% of their total weight can be composed of fat. They are thus highly desirable for reduction fisheries, particularly for fish oil production, and this is where the majority of the European catch ends up. There is potential for human consumption through canning (labelled as 'anchovy') and smoking, and they are also used as food for mink.

Sprat are primarily caught in the Baltic and North Seas, and the Kattergat/Skagerrak area. They are captured with fine-mesh trawls and purse seines. According to the FAO, catches of sprat peaked in the mid-1970s, at about 900,000 tonnes, and dropped substantially in the late 1990s. Catches of sprat over the past decade have averaged about 600,000 tonnes per year.

The state of the stock is unknown, with available research suggesting that the drop in catches is due to factors other than stock abundance. It is generally thought that the stock is in good condition, however, the spawning stock biomass in the Baltic Sea has decreased. Herring bycatch is an issue in this fishery, and consequently, restrictions have been implemented. The EU quotas have steadily declined from almost 585,000 t in 2010 to just over 420,000 tonnes in 2014.
Atlantic herring are distributed along the entire European coast, with the same species also found in the Northwest Atlantic. They grow to be about 20-25 cm in length, and reach maturity between three and nine years of age. Catches of herring peaked in the 1960s, reached lows in the early 1980s, and have increased consistently to the present day. Different stocks are fished for both direct human consumption and for reduction. Overall, EU quotas have increased from around 600,000 tonnes in 2010 to over 780,000 tonnes in 2014.

About half of the annual European herring catch is destined for reduction. The EU, however, has banned the landing of herring for fishmeal and fish oil reduction, except from catches originating in the Baltic Sea. The small size of Baltic Sea herring reportedly makes them unmarketable for human consumption. However, Baltic Sea herring are reported to have high dioxin levels. Dioxins are persistent organic pollutants that can have negative impact on humans, wildlife and ecosystems.

Herring are an important prey species for cod, pollock, mackerel, tuna, squid, whales and seabirds. Killer whales (Orcinus orca), in particular, feed on Atlantic herring, often following migrating herring into the fjords of northern Norway.

When catches of Norwegian spring-spawning herring declined drastically in the mid-1960s, capelin (Mallotus villosus) started to be targeted for reduction fisheries in Europe, in order to supplement fishmeal plants in needed raw material. Capelin is a key target species for reduction fisheries in Europe, but its ecosystem importance was recognized in an ICES Symposium dedicated solely to discussing this species. Capelin have been identified as an important component of the diets of finfish, marine mammals and seabirds, including the great cormorant off Greenland, it is believed that millions of tonnes of capelin are consumed as prey species annually. Most of the European catch of capelin takes place in the Barents Sea, and a significant proportion of that is reduced to fishmeal.

REFERENCES